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Federico Lecumberry

and

Guillermo Sapiro

IMA Preprint Series # 2276

( August 2009 )

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

UNIVERSITY OF MINNESOTA

400 Lind Hall
207 Church Street S.E.

Minneapolis, Minnesota 55455–0436
Phone: 612/624-6066 Fax: 612/626-7370

URL: http://www.ima.umn.edu



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
AUG 2009 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2009 to 00-00-2009  

4. TITLE AND SUBTITLE 
Universal Priors for Sparse Modeling 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Minnesota,Institute for Mathematics and Its 
Applications,Minneapolis,MN,55455-0436 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT 

Same as
Report (SAR) 

18. NUMBER
OF PAGES 

5 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Universal Priors for Sparse Modeling
(Invited Paper)

Ignacio Ramı́rez#1, Federico Lecumberry∗2, Guillermo Sapiro#3

#Electrical Engineering Department, University of Minnesota
200 Union Street S.E., MN 55455, USA

1,3{ramir048,guille}@umn.edu
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Abstract—Sparse data models, where data is assumed to be
well represented as a linear combination of a few elements
from a dictionary, have gained considerable attention in recent
years, and their use has led to state-of-the-art results in many
signal and image processing tasks. It is now well understood
that the choice of the sparsity regularization term is critical in
the success of such models. In this work, we use tools from
information theory to propose a sparsity regularization term
which has several theoretical and practical advantages over the
more standard `0 or `1 ones, and which leads to improved
coding performance and accuracy in reconstruction tasks. We
also briefly report on further improvements obtained by imposing
low mutual coherence and Gram matrix norm on the learned
dictionaries.

I. INTRODUCTION

Sparse modeling calls for constructing a succinct represen-
tation of some data as a combination of a few typical patterns
(atoms) learned from the data itself. Significant contributions
to the theory and practice of learning such collections of atoms
(usually called dictionaries or codebooks), e.g., [1], [12], [20],
and of representing the actual data in terms of them, e.g., [6],
[8], [9], have been developed in recent years, leading to state-
of-the-art results in many signal and image processing tasks
[11], [16], [17]. We refer the reader for example to [3] for a
recent review on the subject.

A critical component of sparse modeling is the actual spar-
sity of the representation, which is controlled by some model
parameters. Choosing the optimal values of these parameters
for the actual signals to model and the problem at hand is
a challenging task. Several solutions to this problem have
been proposed, ranging from the automatic tuning of the
parameters [15] to Bayesian hierarchical models, where these
parameters are themselves considered as random variables
[14], [15], [24]. In this paper we address this challenge, and
at the same time further generalize the standard sparsifying
penalty functions (or priors for short), exploiting tools from
information theory. The result is a prior that has several
desirable theoretical and practical properties such as statistical
consistency, improved robustness to outliers in the data, and
leads to a better sparse reconstruction than `0 and `1-based
techniques in practice. This new model is complemented by
imposing incoherence in the learned dictionary.

II. SPARSE MODELING

Let X ∈ RM×N be a set of N column data samples Xj ∈
RM , D ∈ RM×K be a dictionary of K atoms represented

as columns Dk ∈ RM , and A = {αkj} ∈ RK×N ,Aj ∈
RK , be a set of reconstruction coefficients such that X =
DA. We also use Ak to denote the k-th row of A, which
corresponds to the coefficients associated to the k-th atom in
D. For each j = 1, . . . , N we define the active set of Aj

as Aj = {k : αkj 6= 0}, and ‖Aj‖0 = |Aj | as its cardinality.
The goal of sparse modeling is to design a dictionary D such
that X = DA with ‖Aj‖0 sufficiently small (usually below
some threshold) for all or most data samples Xj . For a fixed
D, the actual computation of A is called Sparse Coding (SC).

We begin our discussion with the standard `1 penalty
modeling problem,

(A∗,D∗) = arg min
A,D
‖X−DA‖2F + λ ‖A‖1 (1)

where ‖·‖F denotes Frobenius norm. The `1 norm is used
as an approximation to `0, making the problem convex in
A while still encouraging sparse solutions [3]. Furthermore,
under certain conditions on D and X, the solutions to the `0
and `1-based sparse coding problems coincide [4].

Since the problem in (1) is non-convex in (A,D), the
standard approach to find an approximate solution is alternate
minimization. Starting with an initial dictionary D(0), the fol-
lowing sequence of subproblems is repeated until convergence,

SC : A(t+1) = arg min
A

f(X,D(t),A)

DU : D(t+1) = arg min
D

f(X,D,A(t+1)),

where f(·) is the cost function in (1) and DU stands for
Dictionary Update. The SC problem can be solved efficiently
using for example Iterative Shrinkage [8] or LARS [9]. The
DU step can be done using for example MOD [12].

III. UNIVERSAL MODELS FOR SPARSE CODING

Given a fixed dictionary D, the problem of finding the co-
efficients A that minimizes (1) can be viewed as a Maximum
a Posteriori (MAP) estimation in the logarithmic scale, that is

A∗ = max
A

log p(X|A) + log p(A), (2)

where p(X|A) ∝ exp(− 1
2σ2 ‖X−DA‖22), and the prior on

A is IID Laplacian with mean 0 and inverse-scale parameter
θ, p(A) ∝ exp(−θ ‖A‖1). The energy term in Equation (1)
follows by taking the logarithms of both priors and factorizing
2σ2 into λ = 2σ2θ.



Even for the Laplacian IID model, the problem of finding
the optimal parameter λ̂ (or θ̂, for given σ2) is already a
challenging problem (see for example [15]).

In this work we consider an independent (but not identically
distributed) Laplacian model where the underlying parameter
θ can be different for each atom k and, furthermore, where
each of these θk can also vary across samples. This scenario
is justified when modeling small patches from natural images,
which is our primary type of data.

Assuming a known parametric form for the prior with
unknown parameter θ leads to the concept of a model class.
In our case, we consider the class M = {p(·|θ) : θ ∈ Θ} of
all Laplacian models p(·|θ) with θ ∈ Θ ⊆ R+/ {0}. The goal
now is to find a probability model for A which can fit each Aj

as well as the model inM that can be fitted to Aj after having
observed it, for every sample j = 1, . . . , N . The construction
of such universal models (meaning that they are universally
good with respect to any model fromM) is the subject of the
universal coding theory, which lies at the core of the Minimum
Description Length principle (MDL) [2].

We now briefly discuss the principles of universal coding,
and how they apply in our case. In the following discussion
we consider the reconstruction coefficients data to be a one-
dimensional sequence of n scalar values αn = (α1, . . . , αn).

For given data αn we measure the goodness of fit of a model
q(·) with respect to M using the codelength regret,1

R(αn, q) := − log q(αn) + log p(αn|θ̂(αn)),

where θ̂(αn) is the Maximum Likelihood Estimator of θ for
the observed αn. Minimizing the worst case regret,

q∗ = min
q

max
αn
− log q(αn) + log p(αn|θ̂(αn)),

leads to the Normalized Maximum Likelihood (NML) distribu-
tion, q∗(αn) = log p(αn|θ̂(αn))/C(M, n). The normalization
constant C(M, n) =

∫
Θ
p(αn|θ)dθ is also the value of the

minimax regret and depends only onM and the length of the
data n. Since the regret of the NML code is at most C(M, n)
for any sequence αn, the NML model q∗ is said to be worst
case universal.

Unfortunately, the NML model depends on the observed
data, so it is not suitable to be used as a prior for computing
the data itself. However, we can obtain a different universal
model, which can be used as a prior, by considering instead
the expected regret. This is defined with respect to a given
distribution p(·|θ) as

R(p(·|θ), q) = Ep(·|θ)[− log q(αn) + log p(αn|θ̂(αn))].

The expected regret can be further averaged with respect to
some hyper-prior on θ itself, w(θ). It is straightforward to see
that this is equivalent to computing the expected regret with
respect to the Bayes mixture

qw(·) =
∫

Θ

p(αn|θ)w(θ)dθ. (3)

1It is a standard assumption in universal coding to consider the codelengths
given by the Shannon code, which assigns a codeword of length − log p(x)
to a random value x with probability p(x)[7].

Since the regret in this case equals

R(qw, q) = Eqw

[
− log qw(αn) + log p(αn|θ̂)

]
+D(qw||q),

where D(·||·) is the Kullback-Leibler divergence (KLD), it is
also trivial to see that R(qw, q) is minimized for q = qw.

An important result in universal coding and MDL theory is
that, for smooth parametric families such as the Laplacian, the
worst case regret of the Bayes mixture obtained for any smooth
choice of w(θ) is within O(1) of the NML regret [2]. This
allows us to choose a prior that is computationally practical,
such as the conjugate prior for the Laplacian, which is the
Gamma distribution, w(θ|κ, β) = Γ(κ)−1

θκ−1βκe−βθ. Here
κ and β are the shape and scale parameters of the Gamma
distribution respectively. Note that, in Bayesian theory, w(θ)
reflects the prior belief on the values of θ. This is the main
idea behind sparse Bayesian coding works such as [14], [22].
As mentioned, results in universal coding [2] tell us that it is
good enough for w(θ) to be smooth to obtain a code that
is (asymptotically) good. However, quite strikingly, it was
observed in practice that the Gamma distribution is indeed
very good for modeling spatial variations in the optimal value
of θ (see Figure 1c along with the discussion in Section IV).

Plugging the Laplacian as p(·|θ) and the Gamma prior as
w(θ) into (3) results in

q(α|β, κ) = 0.5κβκ(|α|+ β)−(κ+1), (4)

which we call a Mixture of Laplacians (MOL). The parameters
can be estimated from data using the method of moments as

κ̂ = 2(µ̂2 − µ̂2
1)/(µ̂2 − 2µ̂2

1) and β̂ = (κ̂− 1)µ̂1, (5)

where µ̂j =
∑n
i=1 |αi|j are the j-th non-central absolute

sample moments. The role of β is equivalent to 1/θ, that is,
it controls the scale of the prior. When the MOL prior (4) is
plugged into (2), the resulting MAP sparse coding model is

A∗ = arg min
A
‖X−DA‖2F + τ

N∑
j=1

K∑
k=1

log (|αkj |+ β) ,

where τ = 2σ2(κ+ 1). The resulting logarithmic non-convex
MOL regularization term is known in robust statistics as the
Lorentzian norm, also known to be more robust to outliers than
the `1 norm. We also know from the statistics literature that
the MOL regularization term leads to consistent estimators of
regression coefficients which are able to identify the relevant
variables in a regression model (oracle property) [13]. This is
not the case for the `1 regularizer [24]. This same regularizer
has also been recently proposed in the context of compressive
sensing [5], where it is conjectured to be better than the `1-
term at recovering sparse signals.2 Our results in Section IV
give evidence that this is indeed the case, with the direct
consequence of a much improved reconstruction accuracy of
sparse data. We also show in Section IV that the MOL prior is
much better to model reconstruction coefficients drawn from
a large database of image patches. We will also see next

2In [5], the logarithmic regularizer arises from approximating the `0

pseudo-norm as a `1-normalized element-wise sum.



that although the MOL regularizer is non-convex, simple and
effective methods are available to solve the resulting sparse
coding (or regression) problems.

Finally, we combine the new prior with two additional terms
that apply to the dictionary D into the following formulation

(A∗,D∗) = arg min
A,D
‖X−DA‖2F + τ

N∑
j=1

K∑
k=1

log (|αkj |+ β)

+ζ
∥∥DTD− IK

∥∥2

F
+ η

K∑
k=1

(‖Dk‖22 − 1)2. (6)

The third term was introduced in a related work [21] to
encourage low mutual coherence and Gram matrix norm of
D, properties which are known to have a direct impact on the
speed of sparse coding algorithms such as Iterative Shrinkage
[8], and on the success of sparse coding formulations in
recovering the correct sparse solutions [10], [23]. The last term
in (6) is just a normalization one.

The SC step for the new sparse model (6) can be ap-
proximately solved using the Local Linear Approximation
technique (LLA) [25], usually requiring less than 15 iterations
to converge. Each iteration of LLA can be recast as a weighted
instance of the standard SC step for (1), which can be solved
efficiently using the tools already mentioned in Section II. The
DU step is done using a Newton-like iteration similar to the
one used in [12]. See [21] for details.

IV. EXPERIMENTAL RESULTS

In the following experiments the data X are 8×8 patches
drawn from the 2600 the Pascal VOC2006 testing subset,3

converted to grayscale in the [0, 1] range.4 We use a dictionary
D with K=256 atoms trained to the VOC2006 training subset
using the model (1) with λ=0.1. These parameter values are
typical in sparse coding applications and produce dictionaries
D that lead to state-of-the-art results [1], [17].

A. MOL as a prior for reconstruction coefficients
We begin by evaluating the performance of the Laplacian

and MOL models for fitting a single global distribution to
the whole matrix A. We compute A using the Basis Pur-
suit formulation (BP)[6] to obtain an exact reconstruction,
min ‖A‖1 s.t.X = DA, and then restrict our study to the
nonzero elements of A. Here X corresponds to all 8×8
patches from the 2600 testing VOC2006 images.

The empirical distribution of A, pE, is plotted in Figure 1a
along with the best fitting Laplacian, pL, and MOL, pM, dis-
tributions. The MLE for the Laplacian fit is θ̂ = N1/ ‖A‖1 =
27.2 (here N1 is the number of nonzero elements in A). For
MOL, using (5), we obtained κ = 2.9 and β = 0.07. The much
better fitting observed in Figure 1a is further confirmed by a
much smaller KLD of the fitted distribution with respect to the
empirical one when using MOL, D(pE||pM) = 0.04, instead of
a Laplacian, which yields D(pE||pL) = 0.30. As a reference,
the empirical entropy of the data is H(pE) = 3.00 bits.

3http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html#VOC2006
4Similar results to those shown here are also obtained for other patch sizes.

We choose not to include them due to space constrains.

Figure 1b shows the histogram h(θ̂) of the K = 256 differ-
ent values of θ̂ when fitted to each Ak, {θ̂k}Kk=1. Figure 1c
shows the empirical distribution of each θ̂k for some k, wkE ,
when computed from 20000 random subsamples of X of size
100, and corresponding best fitting Gamma distributions, wkΓ.
Since the optimal θ̂ varies across samples, we expect the
universal coding approach to perform well also on a per-atom
basis. This is confirmed in Figure 1d, which shows the KLD
between the empirical distribution of each Ak, pkE , against the
globally fitted Laplacian and MOL ones shown in Figure 1a, pL

and pM, and the ones fitted specifically to Ak, pkL and pkM. The
horizontal axis is sorted by increasing D(pkE ||pkL )−D(pkE ||pM).
As can be seen, the KLD for the global pM is significantly
smaller than pL in all cases, and even pkL in most of the cases.
This shows that MOL, with only two parameters, is a much
better model than K Laplacians (requiring K parameters)
fitted specifically to each atom. Whether these improvements
have a practical impact is explored in the sequel.

B. Recovery of noisy sparse signals
Here we compare the active set recovery properties of

the MOL prior, compared to those of the `1-based one, on
data for which the assumption |Aj | ≤ L is made to hold
exactly for all j, for a small L. To this end, we obtain
sparse approximations to each patch Xj using the `0-based
Orthogonal Matching Pursuit algorithm (OMP) [19] on D, and
record the resulting active sets Aj as ground truth. The data is
then contaminated with additive Gaussian noise of variance σ
and the recovery is performed using the denoising formulation
of BP, A`1 = arg minA ‖A‖1 , s.t. ‖X−DA‖2 ≤ Cσ2,
and the “BP equivalent” for the MOL prior, AMOL =
arg minA

∑
log (|αkj |+ β) s.t. ‖X−DA‖2 ≤ Cσ2. Here

we use C = 1.32, which is a standard value in denoising
applications (e.g., [18]).

For each sample j, we measure the error of each method in
recovering its active set as the Hamming distance between the
true and estimated support of its reconstruction coefficients.
The accuracy of the method is then given as the percentage
of the samples for which the error falls below a certain
threshold T , E(L, T ). Results are shown in Figure 1f for
L = 5, T = 2, for various values of σ. Given the estimated
active sets, the clean patches are estimated using least squares
(which is the standard procedure for denoising when the active
set is determined). We then measure the PSNR of the estimated
patches with respect to the true ones. The results are shown
as yellow lines in Figure 1e, again for various values of σ.
The red lines show the same results with a reduced mutual
coherence (RMC) dictionary D learned using the additional
terms included in (6). As can be observed, the MOL-based
recovery is significantly better, specially in the high SNR
case. It can also be observed that using the RMC dictionary
consistently improves the results in all cases. Again, we refer
the reader to [21] for details on this line of research.

C. Recovery of real signals with simulated noise
This experiment is an analogue of the previous one when the

data are the original natural image patches. Since for this case
the sparsity assumption is only approximate, and no ground

http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html#VOC2006


Fig. 1: (a) Empirical distribution of reconstruction coefficients α for image patches and best Laplacian and MOL fitting distributions.
(b) Histogram of the K different θ̂ values obtained for each row Ak. (c) Empirical (wk

E ) and fitted Gamma (wk
Γ) distributions of θ̂k for

some atoms k, when estimated from random subsamples of X. (d) Differences between the KLD for the best fitting distributions computed
per atom. (e),(f) Reconstruction PSNR and active set recovery accuracy E(L, T ) of truly sparse signals for L=5, T =2. (g) Denoising of
real data, using “normal” and RMC dictionaries. Results are relative to OMP using a normal dictionary. This figure is in colors.

truth is available for the active sets, we compare the different
methods in terms of their denoising performance. In this case
we include results for the `0-based OMP algorithm as it is the
one used to obtain state-of-the-art results in image denoising
(see e.g. [1], [18]). The results in Figure 1g show that by using
MOL we get the best of both the `1 and `0-based methods, by
improving on OMP in low and high SNR regions while bridging
the gap between `0 and `1 for mid-SNR. We also see that the
use of a RMC dictionary (red lines) is not an advantage for this
case, except for very high SNR. These results are preliminary,
and further research is needed to assess whether imposing low
mutual coherence can be advantageous for denoising tasks.

V. CONCLUDING REMARKS

A new prior for sparse modeling was introduced in this
work, using tools from universal coding, whose significant the-
oretical and practical advantages over traditional regularization
terms were shown. We also equipped our new model with an
additional term which encourages incoherence in the learned
dictionaries, a property which was also shown to improve the
reconstruction properties of the model. The critical properties
of the proposed model, such as increased stability of the
active set and better sparse approximation, hint to the possible
implications of this model for classification tasks such as
those described in [17]. We are currently investigating this
and results will be reported elsewhere.
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